Acelerador de Partículas

Acercándonos al LHC

Los aceleradores funcionan con partículas cargadas que son aceleradas hasta velocidades próximas a la de la luz. Mediante las colisiones de estas partículas de muy alta energía entre ellas, o contra un blanco fijo, los científicos son capaces de extraer información de los más pequeños componentes de la materia. En esos choques, nuevas partículas son creadas, lo que proporciona valiosos datos para la Física de Partículas. En cierto sentido, los aceleradores de partículas son los "super microscopios" de hoy.

Un tubo de rayos catódicos (TRC) de un televisor tradicional es una forma simple de acelerador de partículas (electróns).


Hay dos tipos básicos de aceleradores: lineales y circulares.

Normalmente, conectamos los acelerador lineales con colisiones contra un blanco fijo y los circulares con colisiones frontales, pero ambos tipos de aceleradores pueden ser usados para ambos tipos. Sobre las diferencias en términos de energía de ambos casos ver...

Una breve descripción de las ventajas e inconvientes de cada uno de ellos puede consultarse aquí...


 ACELERADOR LINEAL

Un acelerador lineal de partículas (también llamado linac) es un dispositivo eléctrico que mediante un diseño lineal acelera partículas subatómicas. Las características dependerán del tipo de partículas que van a ser aceleradas: electrones, protones o iones. Los tamaños van desde el tubo de rayos catódicos, a los 3,4 km del Stanford Linear Accelerator Center (SLAC) en California.

Quizás, el acelerador que tome el relevo al LHC en el futuro sea un acelerador lineal de electrones (CLIC o ILC).


ACELERADOR CIRCULAR

En un acelerador circular, las partículas se mueven en una trayectoria casi circular hasta alcanzar la energía necesaria. Esa trayectoria se consigue usando potentes campos magnéticos. La ventaja sobre los lineales es que de esa forma podemos mantener una continua acelera-ción, dado que las partículas pueden circular todo el tiempo que se necesite. Otra ventaja es que son relativamente más pequeños que los aceleradores lineales de potencia semejante.

Dependiendo de la energía y del tipo de partículas aceleradas, los aceleradores circulares diseñados para la Física de Partículas tienen la desventaja de emitir radiación sincrotrón. Esto provoca una continua pérdida de energía y los problemas asociados a la presencia de este tipo de radiación.

AUTORES


Xabier Cid Vidal, Doctor en Física de Partículas (experimental) por la Universidad de Santiago (USC). Research Fellow in experimental Particle Physics en el CERN, desde enero de 2013 a diciembre de 2015. Actualmente está en el Depto de Física de Partículas de la USC  ("Ramon y Cajal", Spanish Postdoctoral Senior Grants).

Ramon Cid Manzano, profesor de Fïsica y Química en el IES de SAR (Santiago - España), y Profesor Asociado en el Departamento de Didáctica de Ciencias Experimentales de la Facultad de Educación de la Universidad de Santiago (España). Es licenciado en Física y en Química, y Doctor por la Universidad de Santiago (USC).

CERN


CERN WEBSITE

CERN Directory

CERN Experimental Program

Theoretical physics (TH)

CERN Physics Department

CERN Scientific Committees

CERN Structure

CERN and the Environment

LHC


LHC

Detector CMS

Detector ATLAS

Detector ALICE

Detector LHCb

Detector TOTEM

Detector LHCf

Detector MoEDAL


NOTA IMPORTANTE

Toda la Bibliografía que ha sido consultada para esta Sección está indicada en la Sección de Referencias


© Xabier Cid Vidal & Ramon Cid - rcid@lhc-closer.es  | SANTIAGO (ESPAÑA) |

···