Home

Taking a closer look at LHC


  "If there's one thing to do, it's to engage in education".

 George Charpak (Nobel Prize in Physics in 1992).


Large Hadron Collider is the world’s highest energy particle accelerator. LHC (situated in the northwest suburbs of Geneva on the Franco–Swiss border) generates the greatest amount of information that has ever been produced in an experiment before. It will also reveal some of the most fundamental secrets of nature.

In 2012  protons were running with a beam energy of 4 TeV. At the beginning of 2013, the LHC collided protons with lead ions before going into a long maintenance stop until the end of 2014. Running was resumed in 2015 with increased collision 6,5 TeV per protón and another increase in luminosity. Its maximum total energy of 14 TeV is already very close.

One of its main goal has already been reached: to find the Higgs boson

The Nobel prize in Physics 2013 was awarded to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider."

The ATLAS and CMS collaborations announced their discovery of the particle at CERN on 4 July 2012. This result was further elucidated in 2013.

An other important achievement with Run I data was the first observation of the very rare decay of the B0s particle into two muon particles: B0→µ+µ. These decays are studied as they could open a window to theories beyond the Standard Model, such as supersymmetry.

 

(A candidate event in the search for the Higgs boson, showing two electrons and two muons - Image: CMS/CERN)

Despite the enormous amount of information available about this topic, it is not easy for non-specialists to know where the data come from.

Basically, the purpose of this website is to help introducing and informing the wider publicabout the LHC experiment, and some simple physical calculations which take place in all particle accelerators. They can also be used in secondary school classrooms in order to stimulate the curiosity of the students, help them understand the physical concepts of LHC, and they can also be used as an example of the relationship between the cold equations of Physics on the blackboard and the exciting scientific research.

The calculations that you will be finding in this Website are adapted from the Physics of Secondary School and in most cases they are just very simple approaches to the correct results.

It may be interesting to take a look at other websites which give simple description of Particle PhysicsFor exampleAn Introduction To Particle Physics or other links that you can find on this website.

Glossary with an alphabetical list of particle physics terms is included in the last section of this website

 

AUTHORS


Xabier Cid Vidal, PhD in experimental Particle Physics for Santiago University (USC). Research Fellow in experimental Particle Physics at CERN

Ramon Cid Manzano, secondary school Physics Teacher at IES de SAR (Santiago - Spain), and part-time Lecturer (Profesor Asociado) in Faculty of Education at the University of Santiago (Spain). He has a Degree in Physics and in Chemistry, and is PhD for Santiago University (USC).

CERN


CERN WEBSITE

CERN Directory

CERN Experimental Program

Theoretical physics (TH)

CERN Physics Department

CERN Scientific Committees

CERN Structure

CERN and the Environment

LHC


LHC

Detector CMS

Detector ATLAS

Detector ALICE

Detector LHCb

Detector TOTEM

Detector LHCf

Detector MoEDAL

 

 


© Xabier Cid Vidal & Ramon Cid - rcid@lhc-closer.es  | SANTIAGO (SPAIN) | Template based on the design of the CERN website

···